Search results

There are no results.

std.net.tls.Server

type pub Server[T: mut + Deadline + RawSocketOperations]

A type that acts as the server in a TLS session.

Server values wrap existing sockets such as std.net.socket.TcpClient and apply TLS encryption/decryption to IO operations.

Closing TLS connections

When a Client is dropped the TLS connection is closed by sending the TLS close_notify message.

Examples

import std.crypto.x509 (Certificate, PrivateKey)
import std.net.ip (IpAddress)
import std.net.socket (TcpServer)
import std.net.tls (Server, ServerConfig)

let cert = Certificate.new(ByteArray.from_array([1, 2, 3]))
let key = PrivateKey.new(ByteArray.from_array([4, 5, 6]))

let conf = ServerConfig
  .new(cert, key)
  .or_panic_with('failed to create the server configuration')

let server = TcpServer
  .new(ip: IpAddress.v4(0, 0, 0, 0), port: 9000)
  .or_panic_with('failed to start the server')

let con = server
  .accept
  .map(fn (sock) { Server.new(sock, conf) })
  .or_panic_with('failed to accept the new connection')

let bytes = ByteArray.new

con.read(into: bytes, size: 32).or_panic_with('failed to read the data')

Fields

socket

let pub @socket: T: mut

The socket wrapped by this Server.

Static methods

new

Show source code
Hide source code
fn pub static new(socket: T, config: ref ServerConfig) -> Server[T] {
  Server(socket, inko_tls_server_connection_new(config.raw))
}
fn pub static new(socket: T: mut, config: ref ServerConfig) -> Server[T: mut]

Returns a Server acting as the server in a TLS session.

The socket argument is the socket (e.g. std.net.socket.TcpClient) to wrap. This can be either an owned socket or a mutable borrow of a socket.

The config argument is a ServerConfig instance to use for configuring the TLS connection.

Examples

import std.crypto.x509 (Certificate, PrivateKey)
import std.net.ip (IpAddress)
import std.net.socket (TcpServer)
import std.net.tls (Server, ServerConfig)

let cert = Certificate.new(ByteArray.from_array([1, 2, 3]))
let key = PrivateKey.new(ByteArray.from_array([4, 5, 6]))

let conf = ServerConfig
  .new(cert, key)
  .or_panic_with('failed to create the server configuration')

let server = TcpServer
  .new(ip: IpAddress.v4(0, 0, 0, 0), port: 9000)
  .or_panic_with('failed to start the server')

server
  .accept
  .map(fn (sock) { Server.new(sock, conf) })
  .or_panic_with('failed to accept the new connection')

Instance methods

flush

Show source code
Hide source code
fn pub mut flush -> Result[Nil, Error] {
  Result.Ok(nil)
}
fn pub mut flush -> Result[Nil, Error]

Flushes any pending writes to the file system.

Flushing writes is a potentially expensive operation, and unnecessarily calling this method may degrade performance.

When flushing data to disk it's important to remember that the actual behaviour may vary based on the type of file system, operating system and storage hardware that's used. In particular, it's possible for one of these components to say "Yup, I totally flushed the data, you're all good!" when in fact they have not fully flushed the data.

print

Show source code
Hide source code
fn pub mut print[B: Bytes](bytes: ref B) -> Result[Nil, E] {
  try write(bytes)
  write('\n')
}
fn pub mut print[B: Bytes](bytes: ref B) -> Result[Nil, E]

Writes the entirety of bytes to the underlying stream, followed by a Unix newline.

read

Show source code
Hide source code
fn pub mut read(into: mut ByteArray, size: Int) -> Result[Int, Error] {
  into.reserve_exact(size)

  let len = into.size
  let ptr = ptr.add(into.pointer, len)

  match
    inko_tls_server_read(
      @socket.raw_socket,
      @state,
      ptr,
      size,
      @socket.raw_deadline,
      mut read_callback,
      mut write_callback,
    )
  {
    case { @tag = OK, @value = v } -> {
      into.size = len + v
      Result.Ok(v)
    }
    case { @tag = _, @value = e } -> Result.Error(Error.from_os_error(e))
  }
}
fn pub mut read(into: mut ByteArray, size: Int) -> Result[Int, Error]

Reads up to size bytes from self into the given ByteArray, returning the number of bytes read.

The into argument is the ByteArray to read the bytes into. The capacity of this ByteArray is increased automatically if necessary.

The size argument specifies how many bytes are to be read.

The return value is the number of bytes read.

The number of bytes read may be less than size. This can happen for different reasons, such as when all input is consumed or not enough data is available (yet).

read_all

Show source code
Hide source code
fn pub mut read_all(bytes: mut ByteArray) -> Result[Int, E] {
  let mut total = 0
  let mut read_size = INITIAL_READ_ALL_SIZE

  loop {
    match read(into: bytes, size: read_size) {
      case Ok(0) -> return Result.Ok(total)
      case Ok(n) -> {
        total += n

        # To reduce the number of calls to `Reader.read` when there's lots of
        # input to consume, we increase the read size if deemed beneficial.
        if read_size < MAX_READ_ALL_SIZE and n == read_size { read_size *= 2 }
      }
      case Error(e) -> throw e
    }
  }
}
fn pub mut read_all(bytes: mut ByteArray) -> Result[Int, E]

Reads from self into the given ByteArray, returning when all input is consumed.

The return value is the number of bytes read.

Errors

This method returns an Error if the underlying call to Read.read returns an Error.

read_exact

Show source code
Hide source code
fn pub mut read_exact(
  into: mut ByteArray,
  size: Int,
) -> Result[Nil, ReadExactError[E]] {
  let mut pending = size

  while pending > 0 {
    match read(into, pending) {
      case Ok(0) if pending > 0 -> throw ReadExactError.EndOfInput
      case Ok(n) -> pending -= n
      case Error(e) -> throw ReadExactError.Read(e)
    }
  }

  Result.Ok(nil)
}
fn pub mut read_exact(into: mut ByteArray, size: Int) -> Result[Nil, ReadExactError[E]]

Reads exactly size bytes into into.

Whereas Read.read might return early if fewer bytes are available in the input stream, Read.read_exact continues reading until the desired amount of bytes is read.

Errors

If the end of the input stream is encountered before filling the buffer, an Error.EndOfInput error is returned.

If an error is returned, no assumption can be made about the state of the into buffer, i.e. there's no guarantee data read so far is in the buffer in the event of an error.

reset_deadline

Show source code
Hide source code
fn pub mut reset_deadline {
  @socket.reset_deadline
}
fn pub mut reset_deadline

Resets the deadline.

Examples

import std.net.socket (Socket)
import std.time (Duration)

let socket = Socket.datagram(ipv6: false)

socket.timeout_after = Duration.from_secs(5)
socket.reset_deadline

send_file

Show source code
Hide source code
fn pub mut send_file(file: mut ReadOnlyFile) -> Result[Int, Error] {
  net.send_file_userspace(file, self)
}
fn pub mut send_file(file: mut ReadOnlyFile) -> Result[Int, Error]

Sends a read-only file to the other half of self, without the need for an intermediate buffer.

Upon success the number of copied bytes is returned.

Upon returning from this method, the cursor/offset of the source file is the same as it was before calling this method.

Platform differences

The exact mechanism used for sending the file may vary per platform. For example, on FreeBSD, Linux and macOS this method uses the sendfile system call.

Fallbacks

Not all platforms or socket types support zero-copy sending of files. In such cases a userspace copy is performed. Such a fallback is applied to:

  • TLS sockets provided by std.net.tls
  • UdpSocket.send_file and UnixDatagram.send_file on FreeBSD and macOS

The userspace implementation copies data in chunks of 32 KiB and resets the cursor of file to its original position after copying the data. While resetting the cursor incurs a small cost, it ensures behavior is consistent with the kernel implementations of this method.

Examples

import std.fs.file (ReadOnlyFile)
import std.net.ip (IpAddress)
import std.net.socket (UdpSocket)

let file = ReadOnlyFile.new('README.md'.to_path).or_panic
let server = UdpSocket.new(IpAddress.v4(0, 0, 0, 0), port: 9999).or_panic
let client = UdpSocket.new(IpAddress.v4(0, 0, 0, 0), port: 0).or_panic

client.connect(IpAddress.v4(0, 0, 0, 0), port: 9999).or_panic
client.send_file(file).or_panic

let buf = ByteArray.new

server.read(buf, 1024).or_panic
buf.to_string # => '...'

timeout_after=

Show source code
Hide source code
fn pub mut timeout_after=[I: ToInstant](deadline: ref I) {
  @socket.timeout_after = deadline
}
fn pub mut timeout_after=[I: ToInstant](deadline: ref I)

Sets the point in time after which socket operations must time out, known as a "deadline".

Examples

Using a Duration results in this method calculating the absolute time after which operations time out:

import std.net.socket (Socket)
import std.time (Duration)

let socket = Socket.datagram(ipv6: false)

socket.timeout_after = Duration.from_secs(5)

We can also use an Instant:

import std.net.socket (Socket)
import std.time (Duration, Instant)

let socket = Socket.datagram(ipv6: false)

socket.timeout_after = Instant.new + Duration.from_secs(5)

write

Show source code
Hide source code
fn pub mut write[B: Bytes](bytes: ref B) -> Result[Nil, Error] {
  write_all_internal(bytes.pointer, bytes.size)
}
fn pub mut write[B: Bytes](bytes: ref B) -> Result[Nil, Error]

Writes the entirety of bytes to the underlying stream.

Types implementing this method must guarantee that upon returning from this method, either all of the data is written and a Ok(Nil) is returned, or an Error is returned.

Implemented traits

std.drop.

Drop

impl Drop for Server
std.io.

Read

impl Read[Error] for Server
std.io.

Write

impl Write[Error] for Server